
International Journal of Modern Manufacturing Technologies 

ISSN 2067–3604, Vol. XVII, No. 2 / 2025 

https://doi.org/ 10.54684/ijmmt.2025.17.2.15 
 
 

15 

 

 
 

 

 

 

RING TOOL PROFILING TO GENERATE A HELICAL SURFACE, USING 

THE VIRTUAL CONTACT POINT METHOD 
 

Răzvan Sebastian Crăciun1,2, Virgil Gabriel Teodor1,2,  

Georgiana-Alexandra Moroșanu2,3, Nicușor Baroiu1,2 

 
1 “Dunărea de Jos” University of Galați-Romania, Department of Manufacturing Engineering, Domnească street, No. 111, 

800201, Galati, Romania 
2 Research Center in Manufacturing Engineering Technology (ITCM), “Dunărea de Jos” University of Galati, 800201, 

Galati, Romania 
3 Center of Continous Training and Technological Information, Danubius International University Galati, 800654, Galati, 

Romania 

 

Corresponding author: Georgiana-Alexandra Moroșanu, Alexandra.Costin@ugal.ro 

 
Abstract: Helical surfaces with cylindrical form and constant pitch can be generated using tools that are delimited by 

primary peripheral revolution surfaces. This tool's profiling was analyzed using fundamental theoretical methods, focusing 

on the concept of generating the geometry through enveloping involving a revolution surface, which defines the tool's 

primary peripheral geometry. The virtual contact points theorem extends the general concept of enwrapping surfaces, 

offering a distinct perspective that identifies the contact points between the ring tool’s outer contour and the constant-pitch 

cylindrical helical surface. Therefore, an application of this method was made in order to obtain the ring tool profile, which 

will generate a helical surface of cylindrical shape and constant pitch, having a rectilinear profile in the axial plane. 

Implemented in MATLAB, the application generated results that demonstrate the reliability and the practical simplicity of 

using the virtual contact point theorem. 
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1. INTRODUCTION 
 

The generation of helical surfaces of cylindrical shape and constant pitch can be obtained by means of tools that 

are delimited by primary peripheral revolution surfaces, such as side mill tools, end mill tools, or ring tools. 

Ring tools are commonly used in the machining of long helical surfaces, particularly those with relatively small 

pitch values. Their design, based on peripheral primary revolution surfaces, provides a key advantage: the 

cutting process achieves a high level of productivity due to the tool's geometry and continuous contact with the 

part [1, 2]. 

The tools' profiling was analyzed using fundamental theoretical methods, focusing on the concept of generating the 

geometry through enveloping involving a revolution surface, which defines the tool's primary peripheral geometry. 

This surface defines the theoretical geometry on which the tools of the teeth's cutting edges are located and serves 

as a reference from which the tool's shape is started during manufacturing [3]. 

The enveloping between the two surfaces, that of the part to be obtained and that of the generating tool, involves 

a linear contact and can be analyzed using the first Olivier theorem [4]. The problem can also be approached by 

using Gohman’s kinematic theorem of enveloping surfaces, applicable to reciprocally enwrapping surfaces         

[5, 6]. Such surfaces share a contact curve along which their normals are aligned. This curve is referred to as the 

characteristic curve [7]. 

At “Dunărea de Jos” University, several complementary theorems have been formulated over time to address 

the problem of linear contact between reciprocally enveloping surfaces, including the minimum distance 

theorem, the in-plane trajectories theorem, and the theorem of the family of substitute circles, among others [8-

10]. All these complementary theorems establish a mathematically rigorous basis for generating tool profiling, 

particularly by defining their primary peripheral geometry - expressed as a revolution surface - on which the 

tool’s active cutting contours are built. This paper presents an additional approach to ring tool profiling, called 

the ”virtual contact point” theorem, which applies to tools used in the processing of reciprocally enwrapping 

surfaces with linear contact. Originally elaborated for planar enveloping profiles defined by a set of rolling 

centrodes, the method was subsequently generalized to accommodate surface geometries characterized by linear 
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contact enveloping conditions [11]. 

The virtual contact points theorem extends the general concept of enwrapping surfaces, established by Olivier 

and Gohman, offering a distinct perspective that identifies the contact points between the ring tool’s outer 

contour and the constant-pitch cylindrical helical surface [12]. Therefore, an application of this method was 

made in order to obtain the ring tool profile, which will generate a helical surface of cylindrical shape and 

constant pitch, having a rectilinear profile in the axial plane. Implemented in MATLAB, the application 

generated results that demonstrate the reliability and the practical simplicity of using the virtual contact point 

theorem. Previous research has shown that this theorem can be applied not only to the profiling of different 

types of tools but also to the profiling of various surface geometries. 

 

2. VIRTUAL CONTACT POINT METHOD 

 

The theorem has been used in the profiling of disk-type tools, especially for the generation of surfaces of 

cylindrical helical shape with constant pitch and circular cross-sections in the frontal plane [12]. 

As established, when the planar generator of a constant-pitch cylindrical helical surface can be defined through 

parametric equations [3], [5, 6]: 
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the helical surface equation will be given by: 
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, p - the pitch of the helix [3]. 

 

In (2) the surface  is generated by the following equations [3]: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) e

x u, x u cos y u sin ;

: y u, x u sin y u cos ;

z u, p .

  

   

 

 =  − 


=  + 


= 

 (3) 

Assuming that the Σ surface is produced by a tool whose main peripheral surface is a surface of revolution, S, 

the interaction between Σ and S takes place along a curve denoted as CΣS, referred to as the characteristic curve 

[3]. Since each point on the helical surface eventually lies on this characteristic curve, it consequently belongs to 

the generated surface S. 

Thus, each point on the intermediate surface Σ can be interpreted as a ”virtual contact point” with the 

enwrapping surface. To identify the characteristic curve, it is necessary to establish the enveloping condition, 

which determines the relationship between the independent parameters u and  from equation (2), when the 

point is part of the characteristic curve. Within the virtual contact point theorem, the Gohman method is adopted 

as the enveloping condition. Under this condition, at every point along the characteristic curve, the vector of 

normal to the intermediate surface Σ is orthogonal to the vector of velocity produced by the tool’s rotational 

motion around its axis [12]: 
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 0N v N v⊥   =
 
  . (4) 

Assuming that the tool is defined in its own local coordinate system, denoted by XYZ, the axis A


 (being the ring 

tool axis) can be expressed as follows: 

 X Y ZA A i A j A k=  +  + 
 

, (5) 

where AX, AY, and AZ represent the projections of the tool's axis onto the X, Y, and Z axes of the system. 

Figure 1 shows the relative positioning of the two coordinate systems: the one associated with the helical 

surface (xyz) and the one associated with the ring tool (XYZ). 

 

 
Fig. 1. Orientation of the part (xyz) and tool (XYZ) coordinate systems [3]. 

 

If it is accepted that the tool reference system has been chosen so that the Z axis coincides with the axis of the 

tool and the Y axis overlaps the y axis, the tool axis projections onto the axes of the own reference system are 

given by the equations: 
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t being a scalar parameter, variable along the A


 axis. 

The coordinate transformation between the xyz and XYZ systems is given by: 

 ( )2

Tx B = + , (7) 

where β represents the inclination angle of the tool system axes relative to the system of the part, the angle of a 

helical line situated on the Σ surface, measured relative to the axis of that surface: 
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and 
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0
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, see also Figure 1. Also, the R parameter from equation (8) is the radius of the circle on which the 

helix is defined. The a value is chosen from constructive considerations of the tool, to ensure a sufficiently large 

radius for it. 

Therefore, the orientation of the tool axis within the coordinate system, which is associated with the part, is 

defined as follows: 
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 ( ) ( )xA t sin i a j t cos k =   −  +  
 

. (9) 

The normal vector to the surface Σ is determined using the following determinant: 

 
u u u

i j k

N x y z

x y z



  

=




 

 

, (10) 

where u u ux ,y ,z   and x ,y ,z  
   represent the partial derivatives of the  surface equations relative to an 

independent parameter u, respectively . 

 

To follow the enveloping condition, the normal vector to the helical surface Σ will intersect the ring tool axis at 

the current point M. This geometric constraint allows the determination of contact points and the construction of 

a characteristic curve. 

Assuming that the position vector of the point N, which is positioned along the normal to the surface Σ, can be 

expressed in the form: 

 ( ) ( ) ( )M u u u u u un y z y z i x z x z j x y x y k       =  −    +  −    +  −   


 , (11) 

which specifies the distance from the current point M measured along the normal direction, and assuming that 

point N is on the tool axis - thus imposing the intersection of the axis - the following equations system can be 

formulated: 
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From the equations system, the  parameter can be eliminated, obtaining the enveloping condition in the form: 

 ( )u . =  (13) 

3. RING TOOL FOR PROCESSING THE SCREWED SHAFT 

 

Screwed shafts are cylindrical parts on the surface of which two helical channels in opposite directions (left and 

right) are made to allow the automatic change of the longitudinal direction of the cable being wound onto or off 

the drum. Usually, these channels are processed with end mills, but this implies a relatively low productivity. 

By processing with ring tools, productivity is greatly increased. 

The axial section of one of the processed channels is presented in Figure 2. The generator of a helical surface, 

denoted by G, is described by the equations: 
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The helical movement is described by: 

 ( )3x x =  , (15) 

or, in a developed form: 
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Therefore, the helical surface is represented by the following equations: 
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Fig. 2. The constructive dimensions of the ”screwed shaft” part 

 

Under these conditions, the profile’s normal vector will have the direction: 
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Therefore, the normal vector generated from the current point on Σ surface toward the axis of the ring tool is 

expressed as: 
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where λ is the scalar parameter that defines the distance measured from the selected point on surface Σ to the 

point of intersection with the tool axis. 

 

On the other hand, the tool axis vector, in the XYZ system, has the form: 
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which, in the xyz system, becomes: 
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Identifying the enveloping condition involves solving the system of equations: 
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The system (22) enables the  and t parameters: 
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and, through successive calculations, it will reach at the form: 
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The characteristic curve is obtained by combining equations (17) and (26) and within the coordinate systems 

which are associated with the part. The transformation to the XYZ system, which is associated with the tool, is 

performed through the following transformation: 

 ( )2
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0

X x A, A a 

 
 
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. (27) 

In order to find the results that satisfy the enveloping condition, a dedicated script was created in MATLAB 

calculation program, using the MATLAB vpasolve function, with which the numerical solution of a symbolic 

equation can be found. 

The application of this computational approach offers significant advantages compared to classical methods, 

particularly when dealing with complex formulations of the enveloping condition. 

The helical surface Σ, the generator G, and the characteristic curve CC are shown in Figure 3. The points 

determined along the characteristic curve are given in Table 1, and the points corresponding to the ring tool 

generator are centralized in Table 2. 

The coordinates from Table 1 are calculated along the characteristic curve, both in the part and tool coordinate 

systems. These points mark the successive positions where the virtual contact between the helical surface and 

the tool revolution surface is achieved. 

The values in Table 2 are the result of transforming these points into the axial plane of the tool, describing the 

change in the profile radius as a function of the axial height. Thus, the profile shown in Figure 4 is built based 

on these coordinates and represents the active contour of the tool, necessary for generating the helical surface 

with constant pitch. 

 

 
Fig. 3. The generator, surface, and characteristic curve 
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Table 1.  The coordinates of the points identified along the characteristic curve 
In the part's coordinate system In the tool's coordinate system 

x [mm] y [mm] z [mm] X [mm] Y [mm] Z [mm] 

6.445 54.621 33.437 0.058 304.621 34.052 

5.824 56.702 34.375 -0.728 306.702 34.858 

5.196 58.771 35.327 -1.523 308.771 35.674 

4.562 60.829 36.291 -2.327 310.829 36.502 

3.921 62.878 37.265 -3.139 312.878 37.339 

3.276 64.917 38.250 -3.957 314.917 38.186 

2.627 66.948 39.244 -4.781 316.948 39.040 

1.975 68.972 40.247 -5.611 318.972 39.903 

1.319 70.988 41.258 -6.444 320.988 40.773 

0.661 72.997 42.276 -7.282 322.997 41.650 

0.000 75.000 43.301 -8.123 325.000 42.533 

 
Table 2.  Coordinates of the points on the tool’s axial section 

H [mm] R [mm] 

54.621 34.052 

56.702 34.865 

58.771 35.707 

60.829 36.576 

62.878 37.471 

64.917 38.39 

66.948 39.332 

68.972 40.296 

70.988 41.279 

72.997 42.281 

75.000 43.301 

 

Figure 4 shows the ring tool's axial section. The shape of the profile in this section results from determining the 

points where the normal of the helical surface intersects the tool axis, respecting the enwrapping condition 

imposed by the method used. 

 
 

 
Fig. 4. SA - axial section 

 

 

4. CONCLUSIONS 
 

In this paper, the virtual contact point method was applied to the geometrical profiling of a cylindrical helical 

surface of constant pitch. The generator of the surface is a planar curve, specifically a linear segment; however, 

the methodology is sufficiently versatile to handle generating curves described by more complicated 

mathematical equations.  
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Furthermore, the method has been extended to the profiling of an alternative tool type - the disk tool, which is 

used in generating cylindrical helical surfaces of constant pitch, in cases where the generator is defined within 

the frontal plane. 

The results show the quality of the theorem and the possibility of extending its applicability from the study of 

plane enwrapping problems to spatial problems, such as the enwrapping between helical surfaces with 

revolution surfaces. The originality of the method consists of using the MATLAB program's ability to solve 

symbolic calculation problems, which reduces the risk of error and ensures the flexibility of the designed 

programs. 

Practically, for a certain type of tool, a single program can meet the calculation needs because only the form of 

the generating curve and the enveloping condition change. 
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